Built on Surface Emitter Technology, New TSHF5211 890 nm IR Emitting Diode Offers High Typical Radiant Intensity of 235 mW/sr, Fast Switching Times of 15 ns, and Excellent Temperature Coefficient of V_F of -1.0 mV/K ## **Product Benefits:** - 890 nm peak wavelength - Clear, untinted 5 mm leaded plastic package - Based on surface emitter technology - Excellent -1.0 mV/K temperature coefficient of V_F - High typical radiant intensity of 235 mW/sr at a 100 mA drive current - Fast switching times of 15 ns - Low typical forward voltage of 1.5 V - Narrow ± 10° angle of half intensity - RoHS-compliant, halogen-free, and Vishay Green - Lead (Pb)-free and capable of lead (Pb)-free soldering up to 260 °C ## **Market Applications:** High intensity emitter for smoke detectors, light detectors, and industrial sensors #### The News: Vishay Intertechnology broadens its optoelectronics portfolio with the introduction of a new 890 nm high speed infrared (IR) emitting diode in a clear, untinted leaded plastic package. Based on surface emitter technology, the Vishay Semiconductors TSHF5211 combines an excellent -1.0 mV/K temperature coefficient of V_F with higher radiant intensity and faster rise and fall times than previous-generation devices. - 50 % higher radiant intensity than previous-generation solutions - Offers good spectral matching with silicon photodetectors # The Key Specifications: Peak wavelength: 890 nm Typical radiant intensity: 236 mW/sr Angle of half intensity: ± 10° Switching times: 15 ns Forward current: 100 mA Typical forward voltage: 1.5 V Temperature coefficient of V_F: -1.0 mV/K #### Availability: Samples and production quantities of the TSHF5211 are available now, with lead times of 20 weeks for large orders. To access the product datasheet on the Vishay Website, go to http://www.vishay.com/ppg?80343 (TSHF5211) ### **Contact Information:** THE AMERICAS Mr. Jim Toal jim.toal@vishay.com EUROPE Boris Lazic boris.lazic@vishay.com ASIA/PACIFIC Mr. Jason Soon jason.soon@vishay.com